OCR Computer Science Syllabus and Notes

1b. Aims and learning outcomes OCR's GCSE (9–1)

Computer Science will encourage students to:

• understand and apply the fundamental principles and concepts of Computer Science, including abstraction, decomposition, logic, algorithms, and data representation

• analyse problems in computational terms through practical experience of solving such problems, including designing, writing and debugging programs

• think creatively, innovatively, analytically, logically and critically

• understand the components that make up digital systems, and how they communicate with one another and with other systems

• understand the impacts of digital technology to the individual and to wider society • apply mathematical skills relevant to Computer Science.

J277/01: Computer systems [exam paper 1]

Торіс	Where in Program of Study
1.1 Systems architecture	Early Y10 (Hardware topic)
1.2 Memory and storage	Early Y10 (Hardware topic)
1.3 Computer networks, connections and protocols	Late Y10 (Networks)
1.4 Network security	Late Y10 (Networks)
1.5 Systems software	Mid Y10 (Operating systems and Apps)
1.6 Ethical, legal, cultural and environmental impacts of	Early Y11
digital technology	

J277/02: Computational thinking, algorithms and programming [exam paper 2]

Торіс	Where in Program of Study
2.1 Algorithms	Early Y10 (Hardware topic)
2.2 Programming fundamentals	Early Y10 (Hardware topic)
2.3 Producing robust programs	Late Y10 (Networks)
2.4 Boolean logic	Mid Y10 (Logic gates)
2.5 Programming languages and Integrated	Early Y11
Development Environments	

_

2b. Content of Computer systems (J277/01)

2b. Content of Computer systems (J277/01)		
1.1 Systems architecture		
Sub topic and details	Guidance and Notes	
1.1.1 Architecture of the CPU	What actions occur at each stage of the fetch-execute	
The purpose of the CPU:	cycle – The role/purpose of each component and what it manages, stores, or controls during the fetch-execute	
Alex Cheung CPU pages	cycle. The purpose of each register, what it stores (data or	
o The fetch-execute cycle	address). The difference between storing data and an address.	
CPU components and function:		
o ALU (Arithmetic Logic Unit)	The classic Von Neuman machine instruction cycle: FETCH: The address of the next instruction to be fetched is	
[calculations, comparisons, bit	transferred from the PC to the MAR and the instruction is	
manipulations etc.]	register ([C]IR); the PC is incremented.	
o CU (Control Unit)	DECODE: The CU decodes the instruction into signals for the other components	
o Cache	EXECUTE: The ALU will execute any arithmetic or logical	
o Registers	operations and the MAR and MDR will be used for any data transfer operations	
Von Neumann architecture:	STORE: The result of the operations performed is stored in	
o MAR (Memory Address Register)	the Acc.	
o MDR (Memory Data Register)	(Not required - Knowledge of passing of data between	
o Program Counter	registers in each stage)	
o Accumulator		
1.1.2 CPU performance How common characteristics of CPUs affect their performance: o Clock speed	Understanding of each characteristic as listed. The effects of changing any of the common characteristics on system performance, either individually or in combination.	
o Cache size	A faster clock speed will increase performance for all applications unless there is another factor limiting the	
o Number of cores	performance such as GPU speed or secondary storage access times.	
	A larger cache size will increase performance as frequently and recently used data for active tasks can be held in Cache and access in one CPU cycle. More cores will improve performance for software that is programmed to take advantage of multi-threading.	
1.1.3 Embedded systems	What embedded systems are. Typical characteristics of	
The purpose and characteristics of	embedded systems. Familiarity with a range of different	
embedded systems	embedded systems (eg the computer in a washing	
Examples of embedded systems	machine)	

1.2 – Memory and storage	
Sub topic and details	Guidance and Notes
1.2.1 Primary storage (Memory)	Computers have primary storage to enable
" The need for primary storage	instructions and data to be addressed (accessed
	directly) by the CPU for processing.
" The difference between RAM and ROM	
	Primary storage usually consists of RAM and ROM
["] The purpose of ROM in a computer system	
	Key characteristics of RAM and ROM
The purpose of RAM in a computer system	
	Why virtual memory may be needed in a system
Virtual memory	
	How virtual memory works - Transfer of memory
	pages between RAIVI and HDD when RAIVI is filled
1 2 2 Secondary storage	Why computers have secondary storage
<u>1.2.2 Secondary storage</u>	why computers have secondary storage.
The need for secondary storage	Recognise a range of secondary storage
" Common types of storage.	devices/media
common types of storage.	devices/media.
o Ontical	Differences between each type of storage
	device/medium
o Magnetic	
	Compare advantages/disadvantages for each
o Solid state	storage device.
" Suitable storage devices and storage media for	Be able to apply their knowledge in context
a given application	within scenarios.
" The advantages and disadvantages of different	Not required
storage devices	
and storage media relating to these	Understanding of the component parts of these
characteristics:	types of storage.
o Capacity	
o Speed	
0 Portability	
o Durability	
o Reliability	
o Cost	
1.2.3 Units	

The units of data storage:	Why data must be stored in binary format (It is
	the simplest form of data storage and doesn't
o Bit	need complex hardware to read the data) (the
	simplicity of binary also allows the computer to
o Nibble (4 bits)	read the information quicker, and transfer
	information as electrical signals to the transistors
o Byte (8 bits)	which can only work with binary)
o Kilobyte (1,000 bytes or 1 KB)	Familiarity with data units and moving between
o Megabyte (1.000 KB)	each
o Gigabyte $(1,000 \text{ MB})$	
o Terabyte (1,000 GB)	Data storage devices have different fixed
a Potabyte (1,000 GB)	capacities
	capacities
"How data needs to be converted into a binary	Calculate required storage capacity for a given set
format to be processed by a computer	of files
" Data capacity and calculation of data capacity	Calculate file sizes of sound images and text files
requirements	
	\S sound file size = sample rate x duration (s) x bit
	denth
	8 image file size - colour denth x image height
	(mage the size – colour depth x image height
	(px) x image width (px)
	Stoutfile size – hits nor shows story your how of
	g text me size = bits per character x number of
	characters
	Alternatives
	. Use of 1 024 for any united and extended
	• Use of 1,024 for conversions and calculations
	would be acceptable
	• Allowance for metadata in calculations may be
	used
<u>1.2.4 Data storage</u>	Denary number range 0 – 255
Numbers	Hexadecimal range 00 – FF
"How to convert positive denary whole numbers	Binary number range 00000000 – 11111111
to binary numbers	Understanding of the terms 'most significant bit',
(up to and including 8 bits) and vice versa	and 'least significant bit'
" How to add two binary integers together (up to	Conversion of any number in these ranges to
and including	another number base
8 bits) and explain overflow errors which may	Ability to deal with binary numbers containing
occur	between 1 and 8 bits
" How to convert positive denary whole numbers	.g. 11010 is the same as 00011010
into 2-digit	Understand the effect of a binary shift (both left
hexadecimal numbers and vice versa	or right) on a number

" How to convert binary integers to their	Carry out a binary shift (both left and right)
hexadecimal equivalents	
and vice versa	
[°] Binary shifts	
Characters	How characters are represented in binary
	How the number of characters stored is limited
" The use of binary codes to represent characters	by the bits available
	The differences between and impact of each
" The term 'character set'	character sets
	Understand how character sets are logically
The relationship between the number of bits	ordered, e.g. the code for 'B' will be one more
per character in a	than the code for 'A'
character set, and the number of characters	
which can be	Binary representation of ASCII in the exam will
represented, e.g.:	use 8 bits
	(Not required Nomerication of character set
	(Not required - Memorisation of character set
	codes)
0 Officide	
Images	Each pixel has a specific colour, represented by a
	specific code
"How an image is represented as a series of	
pixels, represented in Binary.	The effect on image size and quality when
	changing colour depth and resolution
" Metadata	
	Metadata stores additional image information
" The effect of colour depth (number of bits per	(e.g. height, width, etc.)
pixel) and resolution (number of pixels on the	
image/screen) on:	
o The quality of the image	
o The size of an image file	
Sound	Analogue counds must be stored in hinary
Sound	Analogue sounds must be stored in binary
"How sound can be sampled and stored in digital	Sample rate – measured in Hertz (Hz)
form	
Sampling is converting analogue audio	Duration – how many seconds of audio the sound
signals into digital signals. The computer	file contains
takes measurements of sound wave value	
at intervals called sampling intervals. The values	Bit depth – number of bits available to store each
are converted into digital values to then be	sample (e.g. 16-bit)
saved in a binary.	

" The effect of sample rate, duration and bit depth on:	
o The playback quality	
o The size of a sound file	
1.2.5 Compression	Common scenarios where compression may be
The need for compression	needed
Types of compression:	Advantages and disadvantages of each type of compression
o Lossy	
	Effects on the file for each type of compression
o Lossless	
	Not required
	Ability to carry out specific compression algorithms

1.3 – Computer networks, connections	
and protocols	
Sub topic	Guidance and Notes
1.3.1 Networks and topologies	Required
" Types of network:	The characteristics of LANs and WANs including common
	examples of each
o LAN (Local Area Network)	Understanding of different factors that can affect the
	performance of a network, e.g.:
o WAN (Wide Area Network)	Number of devices connected
	Bandwidth
["] Factors that affect the performance of	The tasks performed by each piece of hardware
networks	The concept of the Internet as a network of computer
	networks
" The different roles of computers in a	A Domain Name Service (DNS) is made up of multiple
client-server and a peer-to-	Domain
peer network	Name Servers
	A DNS's role in the conversion of a URL to an IP address
" The hardware needed to connect stand-	Concept of servers providing services (e.g. Web server "
alone computers into a	Web pages, File server " file storage/retrieval)
Local Area Network:	Concept of clients requesting/using services from a
	server
o Wireless access points	The Cloud: remote service provision (e.g. storage,
o Routers	software, processing)

o Switches	Advar	ntages and disadvantages of the Cloud
o NIC (Network Interface Controller/Card)	Advar	ntages and disadvantages of the Star and Mesh
o Transmission media	topol	ogies
	Apply	understanding of networks to a given scenario
The Internet as a worldwide collection of		
computer networks:		
o DNS (Domain Name Server)		
o Hosting		
o The Cloud		
o web servers and chefts		
["] Star and Mesh network topologies		
1.3.2 Wired and wireless networks ,	Comp	are benefits and drawbacks of wired versus
protocols and layers	wirele	ess connection
Modes of connection:	Recor	nmend one or more connections for a given
o Wired	scena	rio
• Ethernet	The p	rinciple of encryption to secure data across
o Wireless	netwo	ork connections
• WI-FI	IP add	fressing and the format of an IP address (IPv4 and
• Bluetooth		Coddross is assigned to devices, its use within a
Encryption	AIVIA	c address is assigned to devices; its use within a
" Standards	The n	rinciple of a standard to provide rules for areas of
" Common protocols including:	comp	uting
o TCP/IP (Transmission Control	Standards allows hardware/software to interact across	
Protocol/Internet Protocol)	different Manufacturers/producers	
o HTTP (Hyper Text Transfer Protocol)	The principle of a (communication) protocol as a set of	
o HTTPS (Hyper Text Transfer Protocol	rules	for transferring data
Secure)	That o	different types of protocols are used for different
o FTP (File Transfer Protocol)	purpo	ises
o POP (Post Office Protocol)	The b	asic principles of each protocol i.e. its purpose and
o IMAP (Internet Message Access	key fe	atures
Protocol)	How I	ayers are used in protocols, and the benefits of
o SMTP (Simple Mail Transfer Protocol)	using	layers; for a teaching example, please refer to the
" The concept of layers	4-laye	er TCP/IP model
	(Nat a	any ired details of Ethernot M/i Ei and Divetanth
	(NOU I	equired – details of Ethernet, WI-Fi and Bluetooth
	proto	and private ID addresses. Knowledge of individual
	stand	and private if addresses, knowledge of individual
	Not re	arus,
	name	s and function of each TCP/IP laver)
1 4 – Network security	name	
L.4 - NELWOIN SECURITY		Guidance and Notes
1 4 1 Threats to computer systems and not	works	Threats posed to devices (systems
Forms of attack	WUIK5	Theats posed to devices/systems

o Malware	Knowledge/principles of each form of attack
o Social engineering, e.g. phishing, people as the	including:
'weak point'	
o Brute-force attacks	§ How the attack is used
o Denial of service attacks	
o Data interception and theft	§ The purpose of the attack
o The concept of SQL injection	
1.4.2 Identifying and preventing vulnerabilities	Required
" Common prevention methods:	
o Penetration testing	Understanding of how to limit the threats posed
o Anti-malware software	in 1.4.1
o Firewalls	
o User access levels	Understanding of methods to remove
o Passwords	vulnerabilities
o Encryption	
o Physical security	Knowledge/principles of each prevention
	method:
	§ What each prevention method may
	limit/prevent
	§ How it limits the attack

1.5 – Systems software	
Sub topic	Guidance and Notes
<u>1.5.1 Operating systems</u> The purpose and functionality of operating systems: o User interface o Memory management and multitasking o Peripheral management and drivers o User management o File management	 What each function of an operating system does Features of a user interface Memory management, e.g. the transfer of data between memory, and how this allows for multitasking Understand that: § Data is transferred between devices and the processor § This process needs to be managed User management functions, e.g.: § Allocation of an account § Access rights § Security, etc. File management, and the key features, e.g.: § Naming § Allocating to folders § Moving files § Saving, etc. (Not required - Understanding of paging or segmentation)
<u>1.5.2 Utility software</u> The purpose and functionality of utility software Utility system software: o Encryption software o Defragmentation o Data compression	Understand that computers often come with utility software, and how this performs housekeeping tasks Purpose of the identified utility software and why it is required

1.6 – Ethical, legal, cultural and environmental impacts of digital technology		
Sub topic	Guidance and Notes	
1.6.1 Ethical, legal, cultural and environmental	Technology introduces ethical, legal, cultural,	
<u>impact</u>	environmental and privacy issues	
Impacts of digital technology on wider society		
including:	Knowledge of a variety of examples of digital	
	technology and how this impacts on society	
o Ethical issues		
	An ability to discuss the impact of technology	
o Legal issues	based around the issues listed	
o Cultural issues	The purpose of each piece of legislation and the	
	specific actions it allows or prohibits	
o Environmental issues		
	The need to license software and the purpose of	
o Privacy issues		
" Legislation relevant to Computer Science:	Features of open source (providing access to the	
	source code and the ability to change the	
o The Data Protection Act 2018	software)	
	soltwarey	
o Computer Misuse Act 1990	Features of proprietary (no access to the source	
	code, purchased commonly as off-the-shelf)	
o Copyright Designs and Patents Act 1988		
	Recommend a type of licence for a given scenario	
o Software licences (i.e. open source and	including benefits and drawbacks	
proprietary)		

2c. Content of Computational thinking, algorithms and programming (J277/02)

2.1 – Algorithms	
Sub topic	Guidance and Notes
2.1.1 Computational thinking	Understanding of these principles and how they are used to define
" Principles of computational	and refine problems
thinking:	
	When solving a problem (any problem) these principles can be
o Abstraction	useful:
	Decomposition is the process of analyzing a problem or solution into
o Decomposition	logical parts so that solutions to these different modules can be
	created and tested in stages and maybe by a team of people.
o Algorithmic thinking	Abstraction is the naming and separating of the parts of a
	process/system/solution so that the problem can be solved one
	module at a time which usually is easier as each part is less complex.
	OCR seem to prefer this definition. "Hiding or removing irrelevant
	details from a problem to reduce complexity."
	Algorithmic thinking is used to work out the processes needed
	perform a particular function of module.
2 1 2 Designing creating and	Produce simple diagrams to show:
refining algorithms	§ The structure of a problem
"Identify the inputs.	§ Subsections and their links to other subsections
processes, and outputs for a	
problem	https://www.youtube.com/watch?v=F6f6W7S9Y6k
	Structure diagrams can be used to illustrate the decomposition of a
["] Structure diagrams	problem/solution into modules. The structure diagram is like an
_	upside down tree. The whole problem at the top then subdivided
["] Create, interpret, correct,	into its constituent parts.
complete, and refine	
algorithms using:	Complete, write or refine an algorithm using the techniques listed
	Identify syntax/logic errors in code and suggest fixes
o Pseudocode	Create and use trace tables to follow an algorithm
o Flowcharts	Flowchart symbols
	line
o Reference language/high-	
level programming language	Process
	Decision
" Identify common errors	Sub-program
,	Terminal
Trace tables	

2.1.3 Searching and sorting	Understand the main steps of each algorithm
<u>algorithms</u>	Understand any pre-requisites of an algorithm
["] Standard searching	Apply the algorithm to a data set
algorithms:	Identify an algorithm if given the code or pseudocode for it
o Binary search	https://www.cs.usfca.edu/~galles/visualization/Search.html
o Linear search	
	(Not required - the Exam Reference Language algorithm for Merge
["] Standard sorting algorithms:	Sort)
o Bubble sort	
o Merge sort	https://www.cs.usfca.edu/~galles/visualization/ComparisonSort.html
o Insertion sort	

2.2 – Programming fundamentals					
Sub topic	e and Notes				
2.2.1 Programming fundamentals	Practical	use of the techni	iniques in a high-level		
" The use of variables, constants, operators,	language	within the classr	oom		
inputs, outputs and	Understa	anding of each tee	chnique		
assignments	Recognis	e and use the fol	lowing op	perators:	
The use of the three basic programming	Compai	rison operators	Arithm	etic operators	
constructs used to	==	Equal	+	Addition	
control the flow of a program:	!=	Not equal	-	Subtraction	
o Sequence	<	Less than	*	Multiplication	
o Selection	<=	Less than or	/	Division	
o Iteration (count- and condition-controlled		equal to			
loops)	>	Greater than	MOD	Modulus	
" The common arithmetic operators	>=	Greater than	DIV	Quotient	
" The common Boolean operators AND, OR		or equal to		(Integer	
and NOT				division)	
			۸	Exponentiation	
				(to the power)	
2.2.2 Data types	Practical	use of the data t	ypes in a	high-level	
" The use of data types:	language within the classroom.				
o Integer	Ability to choose suitable data types for data in a				
o Real	given sce	enario.			
o Boolean	Understa	and that data type	es may be	e temporarily	
o Character and string	changed	through casting,	and whe	re this may be	
o Casting	useful.				
2.2.3 Additional programming techniques	Practical	use of the addition	onal prog	ramming	
" The use of basic string manipulation	techniques in a high-level language within the				
	classroom.				
" The use of basic file handling operations:					
o Open	Ability to manipulate strings, including:				
o Read	§ Concatenation				
o Write	§ Slicing				

o Close	
" The use of records to store data " The use of SQL to search for data " The use of arrays (or equivalent) when solving problems, including both one-dimensional (1D) and two- dimensional arrays (2D)	Records can be used to store set of related data. Structured Query Language is a Language that allows you to manipulate data in database tables.
	Arrays as fixed length or static structures.
procedures) to produce structured code	Use of 2D arrays to emulate database tables of a collection of fields, and records.
"Random number generation	The use of functions and procedures
	Where to use functions and procedures effectively
	The use of the following within functions and procedures:
	§ local variables/constants
	§ global variables/constants § arrays (passing and returning)
	SQL commands SELECT, FROM, WHERE: SELECT FIELD1_FIELD2_(or *)
	FROM TABLE
	WHERE CONDITION
	example RESULT = 10 or SCORE > 50
	Be able to create and use random numbers in a
	program

2.3 – Producing robust programs	
Sub topic	Guidance and Notes
2.3.1 Defensive design	Understanding of the issues a programmer
" Defensive design considerations:	should consider to ensure that a program caters
o Anticipating misuse	for all likely input values
o Authentication	Understanding of how to deal with invalid data in
" Input validation	a program
["] Maintainability:	Authentication to confirm the identity of a user
o Use of sub programs	Practical experience of designing input validation
o Naming conventions	and simple
o Indentation	authentication (e.g. username and password)
o Commenting	Understand why commenting is useful and apply
	this appropriately

2.3.2 Testing	The difference between testing modules of a
["] The purpose of testing	program during
	development and testing the program at the end
Types of testing:	of production
o Iterative	Syntax errors as errors which break the
o Final/terminal	grammatical rules of the
	programming language and stop it from being
" Identify syntax and logic errors	run/translated
" Selecting and using suitable test data:	Logic errors as errors which produce unexpected
o Normal	output
o Boundary	Normal test data as data which should be
o Invalid/Erroneous	accepted by a program without causing errors
["] Refining algorithms	Boundary test data as data of the correct type
	which is on the very edge of being valid.
	Invalid test data as data of the correct data type
	which should be rejected by a computer system
	Erroneous test data as data of the incorrect data
	type which should be rejected by a computer
	system
	Ability to identify suitable test data for a given
	scenario
	Ability to create/complete a test plan

2.4 – Boolean logic	
Sub topic	Guidance
2.4.1 Boolean logic	Knowledge of the truth tables for each logic gate
" Simple logic diagrams using the	Recognition of each gate symbol
operators AND, OR	Understanding of how to create, complete or edit logic
and NOT	diagrams and truth
Truth tables	tables for given scenarios
" Combining Boolean operators using	Ability to work with more than one gate in a logic diagram
AND, OR and	
NOT	
["] Applying logical operators in truth	
tables to solve	
problems	

	Во	olean Oper	ators	Logi	c Gate Syml	ool	
		AND (Conjunctio	n)	-		_	
		OR (Disjunction	n)	_	\supset	_	
		NOT (Negation))	_	->>-	_	
			Truth	Tables			
	AND			OR		N	от
Α	В	A AND B	А	В	A OR B	А	NOT A
0	0	0	0	0	0	0	1
0	1	0	0	1	1	1	0
1	0	0	1	0	1		
1	1	1	1	1	1		
Alternat Use of o examina	ives ther va ation, e	lid notat g. Using	ion wil T/F foi	l be acc ⁻ 1/0, or	cepted w r V for O	rithin th R, etc.	he

2.5 – Programming languages and Integrated D	evelopment Environments
Sub topic	Guidance
2.5.1 Languages	
" Characteristics and purpose of different levels	The differences between high- and low-level
of programming	programming languages
language:	
	The need for translators
o High-level languages	
	The differences, benefits and drawbacks of using
o Low-level languages	a compiler or an interpreter
The purpose of translators	(Not required - Understanding of assemblers)
" The characteristics of a compiler and an	
interpreter	
2.5.2 The Integrated Development Environment	Knowledge of the tools that an IDE provides
(IDE)	
"Common tools and facilities available in an	How each of the tools and facilities listed can be
Integrated	used to help a programmer develop a program
Development Environment (IDE):	
o Editors	Practical experience of using a range of these
o Error diagnostics	tools within at least one IDE
o Run-time environment	
o Translators	

2d. Practical Programming skills

- Design
- Write (Code)
- Test
- Refine

Any high-level text-based programming language, such as:

- Python
- C family of languages (C#, C++, etc.)
- Java
- JavaScript
- Visual Basic/.Net
- PHP
- Delphi
- BASIC

Students should have experience of all the Practical Programming skills so schools are encouraged to consider using a second language for practical experience.

Practical Programming skills will be assessed in Component 2 of the qualification.

Question focus	Questions asked in:	Students respond using:
Design	Natural English	 ✓ Pseudocode ✓ Flowcharts ✓ Tick-box responses ✓ Natural English
Write	Pseudocode Natural English Flowcharts	 ✓ OCR Exam Reference Language ✓ A high-level programming language
Test	OCR Exam Reference Language	 ✓ Trace tables ✓ Creating test plans ✓ Identifying suitable test data
Refine	OCR Exam Reference Language	 ✓ OCR Exam Reference Language ✓ A high-level programming language ✓ Natural English

OCR Exam Reference Language

Operato							
Comparison operators				Arithmetic operators			
==	Equal to	<=	Less than or equal to	+	Addition	1	Division
!=	Not equal to	>	Greater than	-	Subtraction	MOD	Modulus
<	Less than	>=	Greater than or equal to	*	Multiplication	DIV	Quotient
				^	Exponent		
	Boolea	n operato	rs				
AND	Logical AND						
OR	Logical OR						
NOT	Logical NOT						

Concept	Keyword(s)/Symbols	Example
Commenting		
Comment	//	<pre>//This function squares a number function squared(number) squared = number^2 return squared endfunction //End of function</pre>
Variables		
Assignment	=	x = 3 name = "Louise"
Constants	const	const vat = 0.2
Global Variables	global	global userID = "Cust001"
Input/Output		
Input	input()	<pre>myName = input("Please enter a name")</pre>
Output	print()	<pre>print("My name is Noni") print(myArray[2,3])</pre>
Casting		
Converting to another data type	str()	str(345)
	int()	int("3")
	float()	float("4.52")
	real()	real("4.52")
	bool()	bool("True")

GCSE (9–1) Specification J277

Concept	Keyword(s)/Symbols	Example
Iteration		
FOR loop (Count-controlled)	for to	<pre>for i=0 to 9 print("Loop")</pre>
	next	next i This will print the word "Loop" 10 times, i.e. 0-9 inclusive.
	for to step	for i=2 to 10 step 2
	next	next i This will print the even numbers from 2 to 10 inclusive.
		for i=10 to 0 step -1 print(i)
		next i This will print the numbers from 10 to 0 inclusive, i.e. 10, 9, 8,, 2, 1, 0.
		Note that the `step' command can be used to increment or decrement the loop by any positive or negative integer value.
WHILE loop (Condition-controlled)	while	<pre>while answer != "Correct" answer = input("New answer")</pre>
	endwhile	endwhile Will loop until the user inputs the string "Correct". Check condition is carried out before entering loop.
DO WHILE loop (Condition-controlled)	do	do answer = input("New answer")
	until	<pre>until answer == "Correct" Will loop until the user inputs the string "Correct". Loop iterates once before a check is carried out.</pre>

Concept	Keyword(s)/Symbols	Example
Selection		
IF-THEN-ELSE	if then elseif then else endif	<pre>if answer == "Yes" then print("Correct") elseif answer == "No" then print("Wrong") else print("Error") endif</pre>
CASE SELECT or SWITCH	<pre>switch : case : case : default: endswitch</pre>	<pre>switch day : case "Sat": print("Saturday") case "Sun": print("Sunday") default: print("Weekday") endswitch</pre>

GCSE (9–1) Specification J277

For first assessment in 2022 Version 2.1

Concept	Keyword(s)/Symbols	Example	
String handling/operations			
String length	.length	<pre>subject = "ComputerScience"</pre>	
		subject.length gives the value 15	
Substrings	.substring(x , i) .left(i) .right(i)	<pre>subject.substring(3,5) returns "puter" subject.left(4) returns "Comp" subject.right(3) returns "nce" x is starting index; i is number of characters; 0 indexed</pre>	
Concatenation	+	print(stringA + stringB) print("Hello, your name is: " + name)	
Uppercase	.upper	subject.upper gives "COMPUTERSCIENCE"	
Lowercase	.lower	subject.lower gives "computerscience"	
ASCII Conversion	ASC () CHR ()	ASC(A) returns 65 (numerical) CHR(97) returns 'a' (char)	

Concept	Keyword(s)/Symbols	Example
File handling		
Open	open ()	<pre>myFile = open("sample.txt")</pre>
		Note that the file needs to be stored as a variable.
Close	.close()	myFile.close()
Read line	.readLine()	<pre>myFile.readLine() returns the next line in the file</pre>
Write line	.writeLine()	myFile.writeLine("Add new line")
		Note that the line will be written to the END of the file.
End of file	.endOfFile()	<pre>while NOT myFile.endOfFile() print(myFile.readLine()) endwhile</pre>
Create a new file	newFile()	<pre>newFile("myText.txt")</pre>
		Creates a new text file called "myText". The file would then need to be opened using the above command for Open.
Arrays		
Declaration	array colours[…]	array colours[5] Creates 1D array with 5 elements (index 0 to 4).
		<pre>array colours = ["Blue", "Pink", "Green", "Yellow", "Red"] Arrays can be declared with values assigned.</pre>
Arrays are 0 indexed Arrays only store a single data type	array gameboard[,] =	array gameboard[8,8] Creates 2D array with 8 elements (index 0 to 7).
Assignment	names[] = gameboard[,] =	names[3] = "Noni" gameboard[1,0] = "Pawn"

GCSE (9–1) Specification J277

For first assessment in 2022 Version 2.1

Concept	Keyword(s)/Symbols	Example
Sub programs		
Procedure	procedure name() endprocedure	<pre>procedure agePass() print("You are old enough to ride") endprocedure</pre>
		<pre>procedure printName(name) print(name) endprocedure procedure multiply(numl, num2) print(numl * num2) endprocedure</pre>
Calling a procedure	procedure(parameters)	agePass()
		printName (parameter)
		multiply(parameter1, parameter2)
Function	function name() return endfunction	<pre>function squared(number) squared = number^2 return squared endfunction</pre>
Calling a function	function(parameters)	<pre>print(squared(4))</pre>
		newValue = squared (4) Note: Function returns should be stored in a variable if needed for later use in a program.
Random numbers		
Random numbers	random(,)	<pre>myVariable = random(1,6) Creates a random integer between 1 and 6 inclusive.</pre>
		<pre>myVariable = random(-1.0,10.0) Creates a random real number between -1.0 and 10.0 inclusive.</pre>