
GCSE (9–1) Specification J277 For first assessment in 2022 Version 2.1

OCR Computer Science Syllabus and Notes

1b. Aims and learning outcomes OCR’s GCSE (9–1)
Computer Science will encourage students to:

• understand and apply the fundamental principles and concepts of Computer Science, including

abstraction, decomposition, logic, algorithms, and data representation

• analyse problems in computational terms through practical experience of solving such problems,

including designing, writing and debugging programs

• think creatively, innovatively, analytically, logically and critically

• understand the components that make up digital systems, and how they communicate with one

another and with other systems

• understand the impacts of digital technology to the individual and to wider society • apply

mathematical skills relevant to Computer Science.

J277/01: Computer systems [exam paper 1]
Topic Where in Program of Study

1.1 Systems architecture Early Y10 (Hardware topic)

1.2 Memory and storage Early Y10 (Hardware topic)

1.3 Computer networks, connections and protocols Late Y10 (Networks)

1.4 Network security Late Y10 (Networks)

1.5 Systems software Mid Y10 (Operating systems and Apps)

1.6 Ethical, legal, cultural and environmental impacts of
digital technology

Early Y11

J277/02: Computational thinking, algorithms and programming [exam paper 2]
Topic Where in Program of Study

2.1 Algorithms Early Y10 (Hardware topic)

2.2 Programming fundamentals Early Y10 (Hardware topic)

2.3 Producing robust programs Late Y10 (Networks)

2.4 Boolean logic Mid Y10 (Logic gates)

2.5 Programming languages and Integrated
Development Environments

Early Y11

GCSE (9–1) Specification J277 For first assessment in 2022 Version 2.1

2b. Content of Computer systems (J277/01)

1.1 Systems architecture
Sub topic and details Guidance and Notes

1.1.1 Architecture of the CPU

The purpose of the CPU:

Alex_Cheung_CPU_pages

o The fetch-execute cycle

CPU components and function:

o ALU (Arithmetic Logic Unit)

[calculations, comparisons, bit

manipulations etc.]

o CU (Control Unit)

o Cache

o Registers

Von Neumann architecture:

o MAR (Memory Address Register)

o MDR (Memory Data Register)

o Program Counter

o Accumulator

What actions occur at each stage of the fetch-execute
cycle – The role/purpose of each component and what it
manages, stores, or controls during the fetch-execute
cycle. The purpose of each register, what it stores (data or
address). The difference between storing data and an
address.

The classic Von Neuman machine instruction cycle:
FETCH: The address of the next instruction to be fetched is
transferred from the PC to the MAR and the instruction is
fetched from memory into the MDR and stored in another
register ([C]IR); the PC is incremented.
DECODE: The CU decodes the instruction into signals for
the other components
EXECUTE: The ALU will execute any arithmetic or logical
operations and the MAR and MDR will be used for any data
transfer operations
STORE: The result of the operations performed is stored in
the Acc.

(Not required - Knowledge of passing of data between
registers in each stage)

1.1.2 CPU performance
How common characteristics of CPUs
affect their performance:
o Clock speed

o Cache size

o Number of cores

Understanding of each characteristic as listed.
The effects of changing any of the common characteristics
on system performance, either individually or in
combination.
A faster clock speed will increase performance for all
applications unless there is another factor limiting the
performance such as GPU speed or secondary storage
access times.
A larger cache size will increase performance as frequently
and recently used data for active tasks can be held in
Cache and access in one CPU cycle.
More cores will improve performance for software that is
programmed to take advantage of multi-threading.

1.1.3 Embedded systems
The purpose and characteristics of
embedded systems

Examples of embedded systems

What embedded systems are. Typical characteristics of
embedded systems. Familiarity with a range of different
embedded systems (eg the computer in a washing
machine)

https://hockerillct.com/21/CT/GCSE/ac_cpu/HomePage.html

GCSE (9–1) Specification J277 For first assessment in 2022 Version 2.1

1.2 – Memory and storage
Sub topic and details Guidance and Notes

1.2.1 Primary storage (Memory)
¨ The need for primary storage

¨ The difference between RAM and ROM

¨ The purpose of ROM in a computer system

¨ The purpose of RAM in a computer system

¨ Virtual memory

Computers have primary storage to enable
instructions and data to be addressed (accessed
directly) by the CPU for processing.

Primary storage usually consists of RAM and ROM

Key characteristics of RAM and ROM

Why virtual memory may be needed in a system

How virtual memory works - Transfer of memory
pages between RAM and HDD when RAM is filled

1.2.2 Secondary storage
¨ The need for secondary storage

¨ Common types of storage:

o Optical

o Magnetic

o Solid state

¨ Suitable storage devices and storage media for
a given application

¨ The advantages and disadvantages of different
storage devices
and storage media relating to these
characteristics:

o Capacity

o Speed

o Portability

o Durability

o Reliability

o Cost

Why computers have secondary storage.

Recognise a range of secondary storage
devices/media.

Differences between each type of storage
device/medium.

Compare advantages/disadvantages for each
storage device.

Be able to apply their knowledge in context
within scenarios.

Not required

Understanding of the component parts of these
types of storage.

1.2.3 Units

GCSE (9–1) Specification J277 For first assessment in 2022 Version 2.1

The units of data storage:

o Bit

o Nibble (4 bits)

o Byte (8 bits)

o Kilobyte (1,000 bytes or 1 KB)
o Megabyte (1,000 KB)
o Gigabyte (1,000 MB)
o Terabyte (1,000 GB)
o Petabyte (1,000 TB)

¨ How data needs to be converted into a binary
format to be processed by a computer

¨ Data capacity and calculation of data capacity
requirements

Why data must be stored in binary format (It is
the simplest form of data storage and doesn’t
need complex hardware to read the data) (the
simplicity of binary also allows the computer to
read the information quicker, and transfer
information as electrical signals to the transistors
which can only work with binary)

Familiarity with data units and moving between
each

Data storage devices have different fixed
capacities

Calculate required storage capacity for a given set
of files

Calculate file sizes of sound, images and text files

§ sound file size = sample rate x duration (s) x bit
depth

§ image file size = colour depth x image height
(px) x image width (px)

§ text file size = bits per character x number of
characters

Alternatives

• Use of 1,024 for conversions and calculations
would be acceptable

• Allowance for metadata in calculations may be
used

1.2.4 Data storage
Numbers
¨ How to convert positive denary whole numbers
to binary numbers
(up to and including 8 bits) and vice versa
¨ How to add two binary integers together (up to
and including
8 bits) and explain overflow errors which may
occur
¨ How to convert positive denary whole numbers
into 2-digit
hexadecimal numbers and vice versa

Denary number range 0 – 255
Hexadecimal range 00 – FF
Binary number range 00000000 – 11111111
 Understanding of the terms ‘most significant bit’,
and ‘least significant bit’
Conversion of any number in these ranges to
another number base
Ability to deal with binary numbers containing
between 1 and 8 bits
.g. 11010 is the same as 00011010
Understand the effect of a binary shift (both left
or right) on a number

GCSE (9–1) Specification J277 For first assessment in 2022 Version 2.1

¨ How to convert binary integers to their
hexadecimal equivalents
and vice versa
¨ Binary shifts

Carry out a binary shift (both left and right)

Characters

¨ The use of binary codes to represent characters

¨ The term ‘character set’

¨ The relationship between the number of bits
per character in a
character set, and the number of characters
which can be
represented, e.g.:

o ASCII

o Unicode

How characters are represented in binary
How the number of characters stored is limited
by the bits available
The differences between and impact of each
character sets
Understand how character sets are logically
ordered, e.g. the code for ‘B’ will be one more
than the code for ‘A’

Binary representation of ASCII in the exam will
use 8 bits

(Not required - Memorisation of character set
codes)

Images

¨ How an image is represented as a series of
pixels, represented in Binary.

¨ Metadata

¨ The effect of colour depth (number of bits per
pixel) and resolution (number of pixels on the
image/screen) on:

o The quality of the image

o The size of an image file

Each pixel has a specific colour, represented by a
specific code

The effect on image size and quality when
changing colour depth and resolution

Metadata stores additional image information
(e.g. height, width, etc.)

Sound

¨ How sound can be sampled and stored in digital
form
Sampling is converting analogue audio
signals into digital signals. The computer
takes measurements of sound wave value
at intervals called sampling intervals. The values
are converted into digital values to then be
saved in a binary.

Analogue sounds must be stored in binary

Sample rate – measured in Hertz (Hz)

Duration – how many seconds of audio the sound
file contains

Bit depth – number of bits available to store each
sample (e.g. 16-bit)

GCSE (9–1) Specification J277 For first assessment in 2022 Version 2.1

¨ The effect of sample rate, duration and bit
depth on:

o The playback quality

o The size of a sound file

1.2.5 Compression
The need for compression

Types of compression:

o Lossy

o Lossless

Common scenarios where compression may be
needed

Advantages and disadvantages of each type of
compression

Effects on the file for each type of compression

Not required
Ability to carry out specific compression
algorithms

1.3 – Computer networks, connections
and protocols

Sub topic Guidance and Notes

1.3.1 Networks and topologies
¨ Types of network:

o LAN (Local Area Network)

o WAN (Wide Area Network)

¨ Factors that affect the performance of
networks

¨ The different roles of computers in a
client-server and a peer-to-
peer network

¨ The hardware needed to connect stand-
alone computers into a
Local Area Network:

o Wireless access points
o Routers

Required
The characteristics of LANs and WANs including common
examples of each
Understanding of different factors that can affect the
performance of a network, e.g.:
Number of devices connected
Bandwidth
The tasks performed by each piece of hardware
The concept of the Internet as a network of computer
networks
A Domain Name Service (DNS) is made up of multiple
Domain
Name Servers
A DNS’s role in the conversion of a URL to an IP address
Concept of servers providing services (e.g. Web server "
Web pages, File server " file storage/retrieval)
Concept of clients requesting/using services from a
server
The Cloud: remote service provision (e.g. storage,
software, processing)

GCSE (9–1) Specification J277 For first assessment in 2022 Version 2.1

o Switches
o NIC (Network Interface Controller/Card)
o Transmission media

¨ The Internet as a worldwide collection of
computer networks:
o DNS (Domain Name Server)
o Hosting
o The Cloud
o Web servers and clients

¨ Star and Mesh network topologies

Advantages and disadvantages of the Cloud
Advantages and disadvantages of the Star and Mesh
topologies
Apply understanding of networks to a given scenario

1.3.2 Wired and wireless networks,
protocols and layers
Modes of connection:
o Wired
 • Ethernet
o Wireless
 • Wi-Fi
 • Bluetooth
¨ Encryption
¨ IP addressing and MAC addressing
¨ Standards
¨ Common protocols including:
o TCP/IP (Transmission Control
Protocol/Internet Protocol)
o HTTP (Hyper Text Transfer Protocol)
o HTTPS (Hyper Text Transfer Protocol
Secure)
o FTP (File Transfer Protocol)
o POP (Post Office Protocol)
o IMAP (Internet Message Access
Protocol)
o SMTP (Simple Mail Transfer Protocol)
¨ The concept of layers

Compare benefits and drawbacks of wired versus
wireless connection
Recommend one or more connections for a given
scenario
The principle of encryption to secure data across
network connections
IP addressing and the format of an IP address (IPv4 and
IPv6)
A MAC address is assigned to devices; its use within a
network
The principle of a standard to provide rules for areas of
computing
Standards allows hardware/software to interact across
different Manufacturers/producers
The principle of a (communication) protocol as a set of
rules for transferring data
That different types of protocols are used for different
purposes
The basic principles of each protocol i.e. its purpose and
key features
How layers are used in protocols, and the benefits of
using layers; for a teaching example, please refer to the
4-layer TCP/IP model

(Not required – details of Ethernet, Wi-Fi and Bluetooth
protocols, differences between static and dynamic, or
public and private IP addresses, Knowledge of individual
standards)
Not required but recommended: Knowledge of the
names and function of each TCP/IP layer)

1.4 – Network security

Sub topic Guidance and Notes

1.4.1 Threats to computer systems and networks
Forms of attack:

Threats posed to devices/systems

GCSE (9–1) Specification J277 For first assessment in 2022 Version 2.1

o Malware
o Social engineering, e.g. phishing, people as the
‘weak point’
o Brute-force attacks
o Denial of service attacks
o Data interception and theft
o The concept of SQL injection

Knowledge/principles of each form of attack
including:

§ How the attack is used

§ The purpose of the attack

1.4.2 Identifying and preventing vulnerabilities
¨ Common prevention methods:
o Penetration testing
o Anti-malware software
o Firewalls
o User access levels
o Passwords
o Encryption
o Physical security

Required

Understanding of how to limit the threats posed
in 1.4.1

Understanding of methods to remove
vulnerabilities

Knowledge/principles of each prevention
method:

§ What each prevention method may
limit/prevent

§ How it limits the attack

GCSE (9–1) Specification J277 For first assessment in 2022 Version 2.1

1.5 – Systems software

Sub topic Guidance and Notes

1.5.1 Operating systems
¨ The purpose and functionality of
operating systems:
o User interface
o Memory management and multitasking
o Peripheral management and drivers
o User management
o File management

What each function of an operating system does
Features of a user interface
Memory management, e.g. the transfer of data between
memory, and how this allows for multitasking
Understand that:
§ Data is transferred between devices and the processor
§ This process needs to be managed
User management functions, e.g.:
§ Allocation of an account
§ Access rights
§ Security, etc.
File management, and the key features, e.g.:
§ Naming
§ Allocating to folders
§ Moving files
§ Saving, etc.

(Not required - Understanding of paging or
segmentation)

1.5.2 Utility software
The purpose and functionality of utility
software
Utility system software:
o Encryption software
o Defragmentation
o Data compression

Understand that computers often come with utility
software, and how this performs housekeeping tasks

Purpose of the identified utility software and why it is
required

GCSE (9–1) Specification J277 For first assessment in 2022 Version 2.1

1.6 – Ethical, legal, cultural and environmental impacts of digital technology
Sub topic Guidance and Notes

1.6.1 Ethical, legal, cultural and environmental
impact
Impacts of digital technology on wider society
including:

o Ethical issues

o Legal issues

o Cultural issues

o Environmental issues

o Privacy issues

¨ Legislation relevant to Computer Science:

o The Data Protection Act 2018

o Computer Misuse Act 1990

o Copyright Designs and Patents Act 1988

o Software licences (i.e. open source and
proprietary)

Technology introduces ethical, legal, cultural,
environmental and privacy issues

Knowledge of a variety of examples of digital
technology and how this impacts on society

An ability to discuss the impact of technology
based around the issues listed

The purpose of each piece of legislation and the
specific actions it allows or prohibits

The need to license software and the purpose of
a software licence

Features of open source (providing access to the
source code and the ability to change the
software)

Features of proprietary (no access to the source
code, purchased commonly as off-the-shelf)

Recommend a type of licence for a given scenario
including benefits and drawbacks

GCSE (9–1) Specification J277 For first assessment in 2022 Version 2.1

2c. Content of Computational thinking, algorithms and programming (J277/02)

2.1 – Algorithms

Sub topic Guidance and Notes

2.1.1 Computational thinking
¨ Principles of computational
thinking:

o Abstraction

o Decomposition

o Algorithmic thinking

Understanding of these principles and how they are used to define
and refine problems

When solving a problem (any problem) these principles can be
useful:
Decomposition is the process of analyzing a problem or solution into
logical parts so that solutions to these different modules can be
created and tested in stages and maybe by a team of people.
Abstraction is the naming and separating of the parts of a
process/system/solution so that the problem can be solved one
module at a time which usually is easier as each part is less complex.
OCR seem to prefer this definition. “Hiding or removing irrelevant
details from a problem to reduce complexity.”
Algorithmic thinking is used to work out the processes needed
perform a particular function or module.

2.1.2 Designing, creating and
refining algorithms
¨ Identify the inputs,
processes, and outputs for a
problem

¨ Structure diagrams

¨ Create, interpret, correct,
complete, and refine
algorithms using:

o Pseudocode

o Flowcharts

o Reference language/high-
level programming language

¨ Identify common errors

¨ Trace tables

Produce simple diagrams to show:
§ The structure of a problem
§ Subsections and their links to other subsections

https://www.youtube.com/watch?v=F6f6W7S9Y6k
Structure diagrams can be used to illustrate the decomposition of a
problem/solution into modules. The structure diagram is like an
upside down tree. The whole problem at the top then subdivided
into its constituent parts.

Complete, write or refine an algorithm using the techniques listed
Identify syntax/logic errors in code and suggest fixes
Create and use trace tables to follow an algorithm

Flowchart symbols
Line
Input/Output
Process
Decision
Sub-program
Terminal

https://www.youtube.com/watch?v=F6f6W7S9Y6k

GCSE (9–1) Specification J277 For first assessment in 2022 Version 2.1

2.1.3 Searching and sorting
algorithms
¨ Standard searching
algorithms:
o Binary search
o Linear search

¨ Standard sorting algorithms:
o Bubble sort
o Merge sort
o Insertion sort

Understand the main steps of each algorithm
Understand any pre-requisites of an algorithm
Apply the algorithm to a data set
Identify an algorithm if given the code or pseudocode for it
https://www.cs.usfca.edu/~galles/visualization/Search.html

(Not required - the Exam Reference Language algorithm for Merge
Sort)

https://www.cs.usfca.edu/~galles/visualization/ComparisonSort.html

2.2 – Programming fundamentals
Sub topic Guidance and Notes

2.2.1 Programming fundamentals
¨ The use of variables, constants, operators,
inputs, outputs and
assignments
¨ The use of the three basic programming
constructs used to
control the flow of a program:
o Sequence
o Selection
o Iteration (count- and condition-controlled
loops)
¨ The common arithmetic operators
¨ The common Boolean operators AND, OR
and NOT

Practical use of the techniques in a high-level
language within the classroom
Understanding of each technique
Recognise and use the following operators:

Comparison operators Arithmetic operators

== Equal + Addition

!= Not equal – Subtraction

< Less than * Multiplication

<= Less than or
equal to

/ Division

> Greater than MOD Modulus

>= Greater than
or equal to

DIV Quotient
(Integer
division)

 ^ Exponentiation
(to the power)

2.2.2 Data types
¨ The use of data types:
o Integer
o Real
o Boolean
o Character and string
o Casting

Practical use of the data types in a high-level
language within the classroom.
Ability to choose suitable data types for data in a
given scenario.
Understand that data types may be temporarily
changed through casting, and where this may be
useful.

2.2.3 Additional programming techniques
¨ The use of basic string manipulation

¨ The use of basic file handling operations:
o Open
o Read
o Write

Practical use of the additional programming
techniques in a high-level language within the
classroom.

Ability to manipulate strings, including:
§ Concatenation
§ Slicing

https://www.cs.usfca.edu/~galles/visualization/Search.html
https://www.cs.usfca.edu/~galles/visualization/ComparisonSort.html

GCSE (9–1) Specification J277 For first assessment in 2022 Version 2.1

o Close

¨ The use of records to store data
¨ The use of SQL to search for data
¨ The use of arrays (or equivalent) when
solving problems, including
both one-dimensional (1D) and two-
dimensional arrays (2D)

¨ How to use sub programs (functions and
procedures) to produce
structured code

¨ Random number generation

Records can be used to store set of related data.
Structured Query Language is a Language that allows
you to manipulate data in database tables.

Arrays as fixed length or static structures.

Use of 2D arrays to emulate database tables of a
collection of fields, and records.

The use of functions and procedures

Where to use functions and procedures effectively

The use of the following within functions and
procedures:
 § local variables/constants
 § global variables/constants
 § arrays (passing and returning)

SQL commands SELECT, FROM, WHERE:
SELECT FIELD1, FIELD2 (or *)
FROM TABLE
WHERE CONDITION
CONDITION could be written FIELD < ARGUMENT for
example RESULT = 10 or SCORE > 50

Be able to create and use random numbers in a
program

2.3 – Producing robust programs
Sub topic Guidance and Notes

2.3.1 Defensive design
¨ Defensive design considerations:
o Anticipating misuse
o Authentication
¨ Input validation
¨ Maintainability:
o Use of sub programs
o Naming conventions
o Indentation
o Commenting

Understanding of the issues a programmer
should consider to ensure that a program caters
for all likely input values
Understanding of how to deal with invalid data in
a program
Authentication to confirm the identity of a user
Practical experience of designing input validation
and simple
authentication (e.g. username and password)
Understand why commenting is useful and apply
this appropriately

GCSE (9–1) Specification J277 For first assessment in 2022 Version 2.1

2.3.2 Testing
¨ The purpose of testing

¨ Types of testing:
o Iterative
o Final/terminal

¨ Identify syntax and logic errors
¨ Selecting and using suitable test data:
o Normal
o Boundary
o Invalid/Erroneous
¨ Refining algorithms

The difference between testing modules of a
program during
development and testing the program at the end
of production
Syntax errors as errors which break the
grammatical rules of the
programming language and stop it from being
run/translated
Logic errors as errors which produce unexpected
output
Normal test data as data which should be
accepted by a program without causing errors
Boundary test data as data of the correct type
which is on the very edge of being valid.
Invalid test data as data of the correct data type
which should be rejected by a computer system
Erroneous test data as data of the incorrect data
type which should be rejected by a computer
system
Ability to identify suitable test data for a given
scenario
Ability to create/complete a test plan

2.4 – Boolean logic
Sub topic Guidance

2.4.1 Boolean logic
¨ Simple logic diagrams using the
operators AND, OR
and NOT
¨ Truth tables
¨ Combining Boolean operators using
AND, OR and
NOT
¨ Applying logical operators in truth
tables to solve
problems

Knowledge of the truth tables for each logic gate
Recognition of each gate symbol
Understanding of how to create, complete or edit logic
diagrams and truth
tables for given scenarios
Ability to work with more than one gate in a logic diagram

GCSE (9–1) Specification J277 For first assessment in 2022 Version 2.1

Alternatives
Use of other valid notation will be accepted within the
examination, e.g. Using T/F for 1/0, or V for OR, etc.

2.5 – Programming languages and Integrated Development Environments
Sub topic Guidance

2.5.1 Languages
¨ Characteristics and purpose of different levels
of programming
language:

o High-level languages

o Low-level languages

¨ The purpose of translators

¨ The characteristics of a compiler and an
interpreter

The differences between high- and low-level
programming languages

The need for translators

The differences, benefits and drawbacks of using
a compiler or an interpreter

(Not required - Understanding of assemblers)

2.5.2 The Integrated Development Environment
(IDE)
¨ Common tools and facilities available in an
Integrated
Development Environment (IDE):
o Editors
o Error diagnostics
o Run-time environment
o Translators

Knowledge of the tools that an IDE provides

How each of the tools and facilities listed can be
used to help a programmer develop a program

Practical experience of using a range of these
tools within at least one IDE

GCSE (9–1) Specification J277 For first assessment in 2022 Version 2.1

2d. Practical Programming skills

• Design

• Write (Code)

• Test

• Refine

Any high-level text-based programming language, such as:

• Python

• C family of languages (C#, C++, etc.)

• Java

• JavaScript

• Visual Basic/.Net

• PHP

• Delphi

• BASIC

Students should have experience of all the Practical Programming skills so schools are encouraged to

consider using a second language for practical experience.

Practical Programming skills will be assessed in Component 2 of the qualification.

GCSE (9–1) Specification J277 For first assessment in 2022 Version 2.1

OCR Exam Reference Language

GCSE (9–1) Specification J277 For first assessment in 2022 Version 2.1

GCSE (9–1) Specification J277 For first assessment in 2022 Version 2.1

GCSE (9–1) Specification J277 For first assessment in 2022 Version 2.1

